caladapt

Cal-Adapt:

A MAIGS

Actionable data & tools to enable climate-informed decision-making in California

A California Adaptation 2023 Session

Wednesday, August 2nd, 10:15-11:45 AM

Primary funding provided by the California Energy Commission

> cal-adapt.org analytics.cal-adapt.org

Speakers

Justine Bui

she/her

Spatial Informatics Group

Nancy Thomas

she/her Geospatial Innovation Facility (UC Berkeley)

Nancy Freitas

she/her Lawrence Berkeley National Lab | UC Berkeley

Owen Doherty

he/him

Eagle Rock Analytics

CAL-ADAPT

Problem Statement

- Data portraying climate change in California is difficult to access and take action upon
- Cal-Adapt offers free public access to trustworthy data and tools that support exploration of California's climate change impacts on state infrastructure, communities, and natural resources

CAL-ADAPT: ANALYTICS ENGINE Problem Statement

- California has invested a lot in producing climate projections, but climate data can be difficult to access and utilize for many users
- The Analytics Engine will offer a cloud-based analytics platform to help transform the petabytes of data into useful and accessible data products

Goals for our Session

- Learn about the Cal-Adapt enterprise (Cal-Adapt website and Analytics Engine) and how it will be expanding with the Fifth Climate Assessment
- Understand how engagement and co-production has informed the development of the Analytics Engine

cal-adapt

Cal-Adapt: ANALYTICS ENGINE

The Cal-Adapt Enterprise

Cal-Adapt.org

Explore and analyze climate data from California's Climate Change Assessments

Cal-Adapt provides the public, researchers, government agencies and industry stakeholders with essential data & tools for climate adaptation planning, building resiliency, and fostering community engagement.

i

Cal-Adapt is evolving!

Learn about the Cal-Adapt enterprise and our mission to support California's climate change initiatives and preview our future plans.

READ MORE

• • • • • • • • •

Local Climate Change Snapshot

A starting point to get climate impacts for your location.

EXPLORE

Annual Averages

Projected annual averages of maximum & minimum temperatures and precipitation.

EXPLORE

Sea Level Rise – Coastal Inundation Scenarios

Explore the extent of coastal inundation associated with Sea Level Rise and a 100-year storm from two different SLR models.

EXPLORE

Extreme Weather

Extreme weather events for baseline and future climates.

EXPLORE

Our Mission

We make data portraying climate change in California more **accessible** and **actionable** for a broad audience, with an emphasis on energy sector stakeholders and local governments.

CALIFORNIA'S FOURTH CLIMATE CHANGE ASSESSMENT

Cal-Adapt 2.0

Cal-Adapt provides a way to explore peer-reviewed climate

change projections and scenarios approved by the State and

used as the basis for the California's Fourth Climate Change

Assessment

cal-adapt.org

How is Cal-Adapt being used?

cal-adapt.org

State Climate Resource

Cal-Adapt has been recognized by California's legislature as a key resource to support *climate adaptation resiliency and planning* and has helped California move forward by providing easy access to climate projections sanctioned by the state.

Adaptation Planning Guide (APG)

California Public Utilities Commission

The California Public Utilities Commission (CPUC) issued an **Order Instituting Rulemaking (R.18-04-019)** to integrate climate change adaptation matters in relevant CPUC proceedings.

CA Nature 30x30 Climate Explorer

Regional Planning

The Sierra Climate Adaptation and Mitigation Partnership (Sierra CAMP) used Cal-Adapt to help inform the "<u>Sierra Nevada Climate</u> <u>Vulnerability Assessment</u>," which is designed to help Sierra Nevada communities prepare for climate change.

Regional Planning

The Sierra Climate Adaptation and Mitigation Partnership (Sierra CAMP) used Cal-Adapt to help inform the "<u>Sierra Nevada Climate</u> <u>Vulnerability Assessment</u>," which is designed to help Sierra Nevada communities prepare for climate change.

Sierra Nevada Climate Vulnerability Assessment

CHANGE IN NUMBER OF WARM NIGHTS A YEAR 2070-2099

Subregion	Change Across the Subregion	Average Change Across the Subregion	County	Average Increase in Day Average Includes Diverse Topographic Changes
Subregion Iorth Sierra orth Central Sierra East Sierra Sierra outh Central Sierra	Subregions Include Diverse Topographic Changes	Average Includes Diverse Topoaraphic Chanaes	Alpine	56.9
			Amador	59.2
	W/III (0	Butte	51.6
North Sierra	days a year	davs a vear	Calaveras	66.1
	,,		El Dorado	58.2
Subregion North Sierra Iorth Central Sierra East Sierra iouth Central Sierra South Sierra			Fresno	31.7
North Central	Will increase 1–92	On average will increase 58	Inyo	28.3
Sierra	days a year	days a year	Kern	31.3
			Lassen	62.8
	Will increase 1-91	On average will increase 56	Madera	44.5
Central Sierra	days a year	days a year	Mariposa	56.3
			Modoc	64.7
			Mono	58.4
East Sierra	Will increase 0–86	On average will increase 28	Nevada	58.5
	days a year	days a year	Placer	51.8
			Plumas	64.5
South Central	Will increase 1–89	On average will increase 58	Shasta	36.3
Sierra	days a year	days a year	Sierra	55.7
			Tehama	54.5
	Will increase 0.00	On average will increase 24	Tulare	36.0
South Sierra	days a year	days a year	Tuolumne	55.3
			Yuba	54.1

Tables coincide with the map on the previous page (data points are represented by grid colors). For example: as seen in the subregion table, higher elevations in the North Sierra Region will experience a minimal increase in the number of warm nights per year, whereas the lower elevations will experience a nuch higher increase in warm nights per year over the late-century time period. On average Alpine County will experience a 56.9-night increase. 44

Sierra Nevada Climate Vulnerability Assessment

WATCH THE SUMMARY PRESENTATION

Cal-Adapt is evolving!

Shiphile A shalling

cal-adapt.org

How does the Analytics Engine differ from Cal-Adapt?

Cal-Adapt 2.0

- Fourth Climate Change Assessment data: CMIP5 downscaled climate data
 - Daily temporal resolution
 - ~6km spatial resolution
- Optimized for **fast interactive data visualization** on a web browser
- Hosted on Amazon Web Services using EBS (Elastic Block Store) data storage and Elastic Compute Cloud (EC2)

Analytics Engine

- Fifth Climate Change Assessment data: CMIP6 downscaled climate data
 - Sub-daily (~hourly) temporal resolution
 - ~3km spatial resolution
- Optimized for **big data computational analysis** using the power of the cloud
- Hosted on Amazon Web Services using S3 data storage and Pangeo stack

Expanded Cal-Adapt Enterprise

cal-adapt.org

What is being developed?

Shirt Kither Shirt Hill

Cal-Adapt Web Application 3.0

We are building the next-generation web application to update a subset of climate tools with the latest Fifth Assessment climate data (EPC-21-038)

Key Upcoming Activities

User Needs Assessment

Listening sessions and working groups of key stakeholders to co-produce an updated Cal-Adapt web application that uses the next-generation Fifth Assessment climate data

Beta Data Download Tool

Incorporating Fifth Assessment climate (<u>link</u>) data access

- Daily data
- 3km across California
- 100+ datasets from various GCMs, ensembles, etc.

Tool Launch and Webinar

Full launch of the new Data Download tool to allow easy access to key Fifth Assessment climate variables

How Can You Get Involved?

- Join our co-production process!
- Become a beta tester for our new Data Download tool
- Let us know what data, tools, and guidance materials you need to make Cal-Adapt.org more useful

The Analytics Engine

What is the Analytics Engine?

How does the Analytics Engine work?

When to use Cal-Adapt vs. the Analytics Engine

- Interactive maps and tools
- CMIP5 data
- Daily + 6km resolution

- Detailed data analysis
- CMIP6 data
- Hourly + 3km resolution

IMESERIES_EXAMPLE.IPYNB	timeseries_example.ipynb ×			
• ¥ ⊞ ••) + % □ 🗂 > ■ C >> Code 🗸 🧮	Python 3 (ipykernel)	8 (
A notebook to demonstrate the usage of the timeseries toolkit.	<pre>[4]: app = ck.Application() [5]: app.select()</pre>			
This time we'll also load the timeseries tools with their own abbreviation for convenience.	[5] : Timescale			
You will want to choose "Append historical" and "Area average" if your intention is to work with the timeseries tools.	Time slice: 1971 2070			
For the timeseries 'explore' function, we first need to load the dataset, so that the subsequent operations will be	Variable 1950 2000 2050 2100 2m Air Temperature V Iditorical Reconstruction 2f Historical Climate V Step 24.5 - Middle of the Road			
speedy. Now the main timeseries functionality.	SSP 3-7.0 Business as Usual SSP 5-8.5 Burn it All Area average Z Append historical			
Preview various transforms on the data in real time: And then output whatever	LocSelectorArea Area subset			
the current state is to another variable: And then export it:	Latitude: 32.50 42			
	Longitude: -125.50114			
	CA			

analytics.cal-adapt.org/

cal-adapt

Engagement Process

A co-production approach

Co-create the data, analytics and platform with users, collaborators and stakeholders

Co-production process and activities

Stakeholder map + interviews

Users of climate information for climate adaptation include:

Policy Users, Academics / Researchers, Public Consumer & Learners, and Semi-Technical & Technical Users

Use-Cases

Initial priorities:

Renewable energy planning

01	Threshold-based tools	Identify vulnerable assets, areas, and communities						
02	Hourly time series	Input climate information into impact or management models						
03	Distribution of extreme events	Understand timing and location of extreme events to connect with health impacts, agricultural yields, etc.						
In development:								
04	Wildfire planning	Inform long range prevention and management						

Incorporate climate data into solar, wind, and hydroelectric planning

Cross-cutting issues

01	Uncertainty of climate data	Understand climate model uncertainty and natural variability of the climate system
02	Credibility of climate data	Assess data credibility and learn which data to use t address a specific problem

Notebook development

Cal-Adapt Analytics Engine

WORKING GROUP 3 - June 23, 2022

Group discussion 2: Stakeholder feedback on the Threshold Tools notebook

Definitions refresher

Return period: estimates the average time between extreme events of a certain value. This is sometimes worded as a "1 in x years" event.

Return value: refers to a value or intensity (of temperature, precipitation, or another variable) that would be expected to be exceeded once every return period, or a 1-in-X year event. Effectively it is the inverse of the return period. Instead of wondering how often an extreme heat event will occur, we are instead considering what an extreme temperature event would look like once in any given time period.

Guiding questions

- 1. What specific applications would you use a 1-in-X year threshold event result for?
 - a. What applications would you use a <u>return period</u> for, for a selected return value? [e.g. how frequently an extreme event of x-degrees temperature or x-inches rainfall could occur]

- What specific applications would use use this tool to address?
- How do you currently do these analyses at your agency?
- What variables, resolutions, temporal and spatial scales of data are required?
- What data platform features are required?
- How do you want to output the data?

Notebook development

Cal-Adapt Analytics Engine

WORKING GROUP 3 - June 23, 2022

Group discussion 2: Stakeholder feedback on the Threshold Tools notebook

Definitions refresher

Return period: estimates the average time between extreme events of a certain value. This is sometimes worded as a "1 in x years" event.

Return value: refers to a value or intensity (of temperature, precipitation, or another variable) that would be expected to be exceeded once every return period, or a 1-in-X year event. Effectively it is the inverse of the return period. Instead of wondering how often an extreme heat event will occur, we are instead considering what an extreme temperature event would look like once in any given time period.

Guiding guestions

- 1. What specific applications would you use a 1-in-X year threshold event result for?
 - What applications would you use a <u>return period</u> for, for a selected return value? [e.g. how frequently an extreme event of x-degrees temperature or x-inches rainfall could occur]

Cal-Adapt Analytics Engine

WORKING GROUP 3 - June 23, 2022

State Agency - Drainage design, sizing based on historical data. I will be interested <u>about</u> the overall distribution. Let's say what is the distribution of a 3-day 100-year duration event. It will be important for economic analysis. It is a back and forth exercise. I am trying to find a figure...

Figure 4: Normal probability distribution function of the 100-year return period 1-day extreme precipitation representative of 10 General Circulation Model with 2 Representative Concentration Pathways. The green dot represents the historical data, the blue dots represent the mid-century projection, and the red dots represent the late-century projection.

Table 3. 100-year return period event with a 1-day duration for the mid- and late-century precipitation projection and multiple probabilities ranging from 50% to 99% and their corresponding percentage change from historical data. Historic Data (1960-100-11990-93-09) Precipitation = 2.20mch

	(2034-10	d-Century 0-01:2064-09-30)	Late-Century (2069-10-01:2099-09-30)			
Probability	Precipitatio n (inch)	Percentage Change from Historic	Precipitation (inch)	Percentage Change from Historic		
50%	2.7	22%	2.9	32%		
60%	2.8	27%	3.0	38%		
70%	2.9	31%	3.2	44%		
80%	3.0	36%	3.3	51%		
90%	3.2	43%	3.6	62%		
95%	3.3	49%	3.7	70%		

IOU - We use these estimates mostly for asset-specific analyses. For example, if we know an asset class is sensitive to 110 degree heat, we can prioritize where we want to further study our system. It is also helpful to look at which regions change the most for this type of analysis.

Research Organization - Knowing the return period for a specific value is helpful, but it would also be helpful to know the return period for a specific variable for a particular duration. For example, how often would you expect to see temperature exceeding a threshold for 3 days? 5 days, etc.?

- I see a similar comment from SCE above. The ability to specify the temporal duration would be a valuable functionality.

State Agency - Not using this functionality at this time

IOU - For asset thresholds and building standards, understanding how often an asset will be exposed to a certain hazard or level of hazard is very helpful for system planning

Consultant - We would use it to convert to load or grid events for the purpose of reliability planning.

Notebook development

🖲 thresho	lds	opti	mizeo	d.ip	pynt >	(selec	t_to_export.i	pynb	×	🗷 timeseries_example.ipynb 🏾 ●	threshold_tools_	example.i	р×		
8 +	Ж	Ū	۵	J		C	••	Code	~	Ħ		Python 3 (ip	ykernel)	0	Ŭ	
		Pre	vie	w	vari	ous	trar	sforms	on the	e da	ta in real time:					
[13]	:	time	eseri	ie	s.exp	lore	()									
[13]	:	v 0	Differe	enc	e from	n a his	torical	mean			Extremes					
		Refe	erenc	er	ange:	01 Ja	in 1980	031 Dec 20	12		None	•				
	0				nolo	(ala	0			Resample window: 1	Resample period					
		Sum.	nemo	ve	seasu	nai c	/cie					years •				
		r	unnin	ig ig n	nean				•		Percentile: 0					
		Nun	n time	este	eps: 1	9										
					opo	•										
		R	Disago	gre	egate into four seasons											
			s	ce	enari	o: H	istori	cal + SSP	2-4.5 -	- Mid	dle of the Road					
			1								-	4	۵			
		an (K)	3								man	4	₽			
									100	MA	man man v	[0			
	uning				A www.					si	cesm2	99			- 1	
		u sde	1				(may	M M V			-	- cnrm-esm2-1	- 13			
		meste	0 =	ľ	YA.	Ŵ	N/W	· 1			-	ec-earth3-veg	0			
		19 tii		2	10.4	у.						- fgoals-g3	1			
			-' Ŧ													
						2000		2020	2040 time		2060 2080 2100					
														_		-

Systematic review of data

Lack of data

- Hourly data
- Granular spatial data
- Data on applicationrelevant metrics
- Translating climate data into impact metrics
- Cascading and compounding events

Accessing and working with available projections

- Downloading large data
- Computing power
- Cleaning and aggregating data

Appropriateness of approach for different contexts

- RCP 8.5 for all decisions? Median vs 90th percentile of models?
- Sampling variability?
- How to compute delta?
- To what extent do results differ if approaches change?

Current engagement

1:1 key stakeholder engagement

Current engagement

Develop guidance on best practices for using climate data

How You Can Benefit from the Analytics Engine

Analytics Engine Benefits The Cal-Adapt Analytics Engine

- 1. Reputable, sanctioned climate data localized for California
- 2. Scientifically rigorous (but approachable) analytical tools
- 3. Computational resources to assess vulnerability and plan

Analytics Engine Benefits What data will be included?

Users Expect:

- Rigorous, scientifically sound
- Sanctioned
- Appropriate for California

We Require:

- Open, peer-reviewed and reproducible
- Rigorous metadata and documentation
- Consistent with state guidelines for climate data use

Analytics Engine Benefits **Overview of data sources**

Foundational climate data for California's Fifth Climate Assessment

- Localized climate projections
- Historical observations

Derived products:

- Wildfire projections
- Renewable energy potential
- Hydrological modeling

Downscaled Climate Projections: WRF

Source: Stefan Rahimi, UCLA

- Dynamically downscaled from 4
 CMIP6 Global Climate Models using WRF model
- Shared Socioeconomic Pathways 2-4.5, 3-7.0, 5-8.5
- Hourly, daily, and monthly time resolution
- 3km, 9km, and 45km
- 20+ variables: air temperature, precipitation, wind speed, humidity, etc.

Downscaled Climate Projections: LOCA2

- Hybrid statistically downscaled from
 64 CMIP6 Global Climate Models using LOCA approach
- Shared Socioeconomic Pathways 2-4.5, 3-7.0, 5-8.5
- Daily and monthly time resolution
- 3km
- 8 variables: air temperature,
 precipitation, wind, humidity, solar
 radiation

WRF

Not bias corrected: can be used as-is to examine relative change but not absolute values

Suitable for applications that require **subdaily observations** and focus on **extremes**

Compare across GCM and global emissions scenario

LOCA2

Bias corrected: absolute values can be used as direct inputs into models

However, sub-monthly extremes may be distorted by this approach

Can characterize within-model variability in addition to across GCM and emissions scenario

Not bias corrected: can be used asis to examine relative change but not **Bias corrected**: absolute values can be used as direct inputs into models

Data selection depends on your question of interester, sub-monthly extremes

 $s \rightarrow$ The Analytics Engine provides tools to help assess which model output is sight for your application focus

Compare across GCM and global emissions scenario Can characterize within-model variability in addition to across GCM and emissions scenario

Analytics Engine Benefits Challenges

- 1. Types of Downscaling
- 2. Bias Correction
- 3. How fine scale?
- 4. What time points?
- 5. Massive datasets
- 6. Difficult to use formats

Analytics Engine Benefits What's In the Analytics Engine

Analytics Engine Benefits Data Catalogue

×

Current Analytics Engine Data Catalog

Datasets available to download and analyze through Cal-Adapt: Analytics Engine

Q wrf, prec, hourly

Downscaling Method	Institution	Source	Experiment	Variant	Frequency	Variable*	Resolution	Path
WRF	UCLA Center for Climate Science	CESM2	ssp245	r11i1p1f1	Hourly	prec	9-km (d02)	s3://cadcat/wrf/ucla/cesm2/ssp245 /1hr/prec/d02/
WRF	UCLA Center for Climate Science	CESM2	ssp370	r11i1p1f1	Hourly	prec	45-km (d01)	s3://cadcat/wrf/ucla/cesm2/ssp370 /1hr/prec/d01/
WRF	UCLA Center for Climate Science	CESM2	ssp370	r11i1p1f1	Hourly	prec	9-km (d02)	s3://cadcat/wrf/ucla/cesm2/ssp370 /1hr/prec/d02/
WRF	UCLA Center for Climate Science	CESM2	ssp370	r11i1p1f1	Hourly	prec	3-km (d03)	s3://cadcat/wrf/ucla/cesm2/ssp370 /1hr/prec/d03/
WRF	UCLA Center for Climate Science	CESM2	ssp585	r11i1p1f1	Hourly	prec	45-km (d01)	s3://cadcat/wrf/ucla/cesm2/ssp585 /1hr/prec/d01/
WRF	UCLA Center for Climate Science	CESM2	ssp585	r11i1p1f1	Hourly	prec	9-km (d02)	s3://cadcat/wrf/ucla/cesm2/ssp585 /1hr/prec/d02/
WRF	UCLA Center for Climate Science	CNRM- ESM2-1	historical	r1i1p1f2	Hourly	prec	45-km (d01)	s3://cadcat/wrf/ucla/cnrm-esm2-1 /historical/1hr/prec/d01/
WRF	UCLA Center for Climate Science	CNRM- ESM2-1	historical	r1i1p1f2	Hourly	prec	9-km (d02)	s3://cadcat/wrf/ucla/cnrm-esm2-1 /historical/1hr/prec/d02/
WRF	UCLA Center for Climate Science	CNRM- ESM2-1	historical	r1i1p1f2	Hourly	prec	3-km (d03)	s3://cadcat/wrf/ucla/cnrm-esm2-1 /historical/1hr/prec/d03/
WRF	UCLA Center for Climate Science	CNRM- ESM2-1	ssp370	r1i1p1f2	Hourly	prec	45-km (d01)	s3://cadcat/wrf/ucla/cnrm-esm2-1 /ssp370/1hr/prec/d01/
Items per page: 10	✓ 11-20 of 37 items							2 ∨ of 4 pages ◀ ►

* See variable descriptions here

Analytics Engine Benefits Climate Functions

Prebuilt functions which can be called through the ClimakitAE library

Average Meteorological Year: Los Angeles County Difference between Warming Level Future at 2°C and Historical Baseline

3

Hour of Dav

Hour of Day

Analytics Engine Benefits Jupyter Notebooks

- Uncertainty tools: understand sources of uncertainty in using climate data
- Threshold tools: explore extreme events
- Warming levels: apply global warming level framework to analyze regional responses

Coming soon

- **Typical meteorological years:** create time series of hourly annual data representing 'typical' conditions
- Model selection tool: evaluate model skill and select the right models for your study needs

Thre	eshold eve	ent options
Direction		Value (units: K)
above	•	291
I'm interested in e	extreme condit	tions that last for
1	^	hour •
Show me a timese	eries of the nu	mber of occurences every
1	_	year 🔻
Optional aggrega contain at least or	tion: l'm intere ne occurance.	ested in the number of that
1	\$	hour 🔻
After aggregation	, I'm intereste	d in occurances that last for
1	\$	hour •
	Smoot	hing
Smoothing		

Air Temperature at 2m: events above 291K

Number of hours each year

• getting_started.ipynb: Introduction to retrieving, visualizing, and exporting climate data using python and the Analytics Engine

Variable:

Air Temperature at 2m

Temperature of the air 2m above Earth's surface. This is the measure of air temperature used for most modeling applications.

Historical Data:
Estimates of recent historical climatic
conditions
Historical Climate

Historical Reconstruction

Future Model Data:

Shared Socioeconomic Pathways (SSPs) represent different global emissions scenarios

SSP 3-7.0 -- Business as Usual
 SSP 2-4.5 -- Middle of the Road
 SSP 5-8.5 -- Burn it All

g vm

•

Subset the data by...
none

Location selection

•

Variable Units:

⊖ degC ⊖ degF

Timescale:

monthly

Odaily

○ hourly

 \bigcirc 3 km

○ 9 km
○ 45 km

Model Grid-Spacing:

entire domain

Latitude: 32.50 .. 42

Longitude: -125.50 .. -114

Compute an area average across grid cells within your selected region?

🔾 Yes 🗿 No

C jupyterhub

Rectangular Snip

Sign in with AWS Cognito

\leftrightarrow \rightarrow C \diamond \Rightarrow	https://hub.cal-adapt.org/hub/spawn	-pending/owen@eaglerockanalytics.com	240% 🛱 🗵 🖉 🕅	© ##	•	•) එ	Ξ
💭 jupyter	ub Home	Token	owen@eaglerockanalytics.com		G L	.ogo	out	

Your server is starting up.

You will be redirected automatically when it's ready for you.

2023-07-28T21:39:57Z [Normal] Started container notebook

Event log

C Launcher

0	getti File	ing_s _{Edit}	tarted.ipynb View Run Kernel	Git Tabs Settings Hel	D .	
-	8 -	+ %		🕬 Markdown 🗸 📃	() git	
•			(+ will create a new ce	I following the currently	elected)	
-			(1 1111 010000 0 11011 00	in tonothing the currently i		
-			Stop 2. Potrie	wo data		
-			Step 2. Retire			
0			Call app.retrieve(), to a	ssign the subset/combo o	f data specified to a variable name of your choosing,	in an xarray DataArray format.
1		[14]:	data_to_use = app.re	etrieve()		
			You can preview the d	ata in the retrieved aggree	ated dataset when this is complete	
٠			fou can prenew the u	ata in the retrieved, uggre	area autoset men trib is comprete.	
			data_to_use			
≣			xarray.DataArray 'Air 1	femperature at 2m' (scen	ario: 1, simulation: 1, time: 43808, y: 23, x: 22)	
*			0))	Array Chu	ik 1	
			Bytes	84.56 MiB 5.69 M		
			Shane (1 1 438)	18 23 22) (1 1 3388 20 2	2) 83	
			Shape (1, 1, 4500		23	
			Count 56 Gra	ph Layers 40 Chur	22	
			Туре	float32 numpy.ndarr	ау	
			▼ Coordinates:			
			time	(time) datetime64	ns] 1980-09-01 2100-08-31	
			x	(x) floa	t64 -4.215e+064.026e+06	
			У	(y) floa	t64 7.459e+05 7.549e+05 9.439e+05	
			simulation	(simulation) <1	I26 'WRF_CESM2_r11i1p1f1'	
			lakemask	(y, x) floa	132 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
			landmask	(y, x) floa	132 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0	
			lat	(y, x) floa	t32 32.76 32.81 32.86 35.18 35.23	
			lon	(y, x) floa	t32 -118.5 -118.4118.1 -118.0	
			Lambert_Confor	0 in	t64 0	
			scenario	(scenario) <1	137 'Historical + SSP 5-8.5 Burn	
			▼ Attributes:			
			variable id :	t2		
			extended descri	Temperature of the air 2r	above Earth's surface. This is the measure of air ten	nperature use
				d for most modeling app	ications.	
			units :	degF		
			data_type :	Gridded		
			resolution :	9 km		
			frequency :	daily		
			location_subset :	Los Angeles County		
			institution :	UCLA		
			grid_mapping :	Lambert_Conformal		
S	mple 🧲		0 53 3 🐵 🚸	main Python 3 (ipykerne) Idle Mem: 3.74 / 6.00 GB	

\Box	get	ting_s	tarted.ipynb					
	File	Edit	View Run Kernel Git Tabs Settings Help					
	8	+ %	C □ □ ▶ ■ C → Code ∨ ≡ O git	¢	Pytł	hon 3 (ipykernel) (Q ²⁴
			Step 4: Export data					ŧ
			To export, first pick a format from the dropdown menu.					
0			We recommend NetCDF, which will work with any number of variables and dimensions in your dataset					
			 CSV and GeoTIFF can only be used for data arrays with one variable 					
1			• CSV works best for up to 2-dimensional data (e.g., Ion x Iat), and will be compressed and exported with a separate metadata file					
			GeoTIFF can accept 3 dimensions total:					
•			 X and Y dimensions are required 					
Ť			The third dimension is flexible and will be a "band" in the file: time, simulation, or scenario could go here					
≔			 Metadata will be accessible as "tags" in the .tif 					
		[12]:	app.export_as()	⊡ ↑	\checkmark	± ∓ ≣		
		[12]:	_FileTypeSelector					
			Output file format					
			Pick a file format					
			Next, write in the object you wish to export and your desired filename (in single or double quotation marks).					
		[13]:	<pre>app.export_dataset(data_to_use, 'my_filename')</pre>					
analy	, vtics.	.cal-ac	dapt.org/					

What's in Development?

Analytics Engine Developments Guidance and Help

- Convey appropriate use guidelines for climate data
- Help finding the subset of projections right for you

Analytics Engine Developments

More Data!

Coming soon:

- Wildfire Projections
- Renewable Generation Profiles
- Three Hydrological Models
- Historical Weather Observations
- Potentially Additional Contributed Research Data

Analytics Engine Developments

New Tools and Capabilities

Coming soon

- **Typical meteorological years:** create time series of hourly annual data representing 'typical' conditions
- Model selection tool: evaluate model skill and select the right models for your study needs
- Wildfire indices: derived proxies of wildfire risk from climate model data

Analytics Engine Developments

User Contributions

Co-Generation

• Capacity to benefit less resourced groups

First examples of Cogeneration:

- Department of Water Resources methods
- Derived data

Check out the Analytics Engine!

For the month of **August 2023** we're happy to extend temporary logins to non-energy stakeholders!

Please email <u>analytics@cal-adapt.org</u> with your request.

Let's jump into a panel Q&A session with our speakers!

Q&A Session

Thank you for your time!

cal-adapt

Cal-Adapt: ANALYTICS ENGINE

Learn more by visiting our websites! Cal-Adapt: <u>cal-adapt.org</u> Analytics Engine: <u>analytics.cal-adapt.org</u>

Get in touch! Cal-Adapt: <u>support@cal-adapt.org</u> Analytics Engine: <u>analytics@cal-adapt.org</u>